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Lag Order and Critical Values
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Response surface analysis is used to obtain approximate finite-sample critical values for the
augmented Dickey—Fuller (ADF) test. Previous studies estimating the critical values for the test
have generally ignored their possible dependence on the lag order. This study shows that the
lag order. in addition to the sample size, can affect the finite-sample behavior of the test. The
result points to the importance of correcting for the effect of lag order in applying the ADF test.
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The augmented Dickey—Fuller (or ADF) test is a com-
monly used unit-root test. Fitting an (autoregressive) AR(k)
model, this test examines the null hypothesis of an (autore-
gressive integrated moving average) ARIMA(p, 1, 0) process
against the stationary ARIMA( p+1, 0, 0) alternative. Dickey
and Fuller (1979) derived the limiting distribution of the ADF
test when p < k — 1. Approximate critical values for the test
with k£ = 1 were tabulated by Fuller (1976) for specific sam-
ple sizes. For the case of k >- 1, the ADF test has the same
limiting distribution as when & = I, provided that the condi-
tion p < k — 1 holds. Although this is an asymptotic result,
the critical values tabulated by Fuller (1976) have often been
applied to tests with arbitrary values of k in finite samples.

Using response surface analysis, MacKinnon (1991) pro-
vided finite-sample critical values for the ADF test. The
analysis yields estimates of critical values not for only a few
sample sizes but any sample size. These critical values, like
those of Fuller (1976), are based on the ADF test with k = 1
only. Through extensive response surface estimation of quan-
tiles, MacKinnon (1994) further showed that an approximate
asymptotic distribution function for the test can be obtained.

Although the distribution of the ADF test statistic does
not depend on the lag order asymptotically, it can be sensi-
tive to the lag order in finite samples, with which empirical
applications necessarily deal. This study examines the in-
dividual roles of the sample size and the lag order in deter-
mining the finite-sample critical values of the ADF test. By
properly accounting for the effect of lag order, this study ex-
tends MacKinnon’s (1991) and provides improved estimates
of critical values of the ADF test. MacKinnon'’s (1994) anal-
ysis may check the accuracy of results on asymptotic distribu-
tions derived analytically, and the lag order & is controlled and
fixed at unity in his analysis. In contrast, the present study fo-
cuses the analysis on finite-sample distributions and demon-
strates that critical values previously available are biased for
ignoring their dependence on the lag order.
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1. THE AUGMENTED DICKEY~FULLER TEST

Let x, be a time series. Deriving from an AR(k) represen-
tation, the ADF test involves the following regression:

k—1
Ax,=p+yt+ox,_, + ZB,Ax,_, + Uy,
)=l
where A is the difference operator and u, is a white-noise in-
novation. The test examines the negativity of the parameter o
based on its regression ¢ ratio. Dickey and Fuller (1979) de-
rived the asymptotic distribution of the statistic. Hall (1994)
showed that the asymptotic distribution is unaffected by data-
based model selection using standard information criteria.
To the extent that the distribution can be sensitive to the lag
order in finite samples, there remains the problem of applying
appropriate lag-adjusted critical values.

(O

2. FINITE-SAMPLE CRITICAL VALUES

Response surface methodology has been used in many
fields of applied statistics (Myers, Khuri, and Carter 1989).
Early studies using the methodology in econometrics include
Hendry (1979), Hendry and Harrison (1974), and Hendry
and Srba (1977); references for later work were provided by
Ericsson (1991) and Hendry (1984). Cheung and Lai (1993a)
estimated finite-sample critical values for reduced-rank coin-
tegration tests by taking into account their dependence on the
lag order. Computationally simple response surface equa-
tions were obtained, yielding critical values that correct for
the lag-order effect (see also Cheung and Lai in press).

Response surface analysis applies in general to a system
in which the response of some variable depends on a set of
other variables that can be controlled and measured in exper-
iments. Simulations are conducted to assess the effects on
the response variable of designed changes in the control vari-
ables. A response surface describing the response variable
as a function of the control ones is then estimated.
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In our analysis, the response variable is the finite-sample
critical value of the ADF test, and the control variables are the
sample size (V) and the lag order (k). A factorial experimental
design is employed, covering 228 different pairings of N =
{18,20,22,25,27, 30,33, 36, 39,42, 45, 50, 55, 60, 65, 70,
75, 80, 85, 90, 95, 100, 150, 200, 250, 300, 350, 400, 500}
and £ = {1,2,3,4,5,6,7,9}. For N < 25, k < 5 is used.
The data-generating process (DGP) is specified as

X, =X+ &, (2)

with e, being independently distributed standard normal in-
novations. Setting the variance of e, equal to unity is without
loss of generality for determining critical values. Sample se-
ries of x, are generated by setting the initial value x, equal
to 0 and creating N + 50 observations, of which the first 50
observations are discarded. Pseudorandom normal variates
are generated using the GAUSS subroutine RNDN (the sim-
ulation program is available on request). For a given pairing
of (N, k), all of the 10%, 5%, and 1 % critical values are com-
puted as quantiles directly using 30,000 replications (40,000
for N < 30) in an experiment, though different sets of random
numbers are used across experiments.

The regression model given by (1) is more general than
the DGP considered. Higher-order DGP’s, for which e, is
autocorrelated, will contain additional nuisance parameters.
QOur experimental design generalizes MacKinnon’s (1991) by

including & but still omits those other nuisance parameters.
Finite-sample correction for the latter—albeit desirable—is
hard to make, given the potential size of the parameter space
of these unknown parameters. Cheung and Lai (1993b) ex-
amined the sensitivity of finite-sample critical values of eight
different DGP’s with AR or MA dependence in ¢,. Consistent
with asymptotic results of Said and Dickey (1984), Cheung
and Lai (1993b) found that size distortion can be small, pro-
vided that & is large enough to capture the dependence.

To check the accuracy in estimating finite-sample critical
values, standard errors of the Monte Carlo-estimated critical
values are calculated based on Rohatgi (1984, pp. 496-500).
In general, and as expected, tests with larger samples tend to
have smaller estimated standard errors (ESE). For the 10%,
5%, and 1% test, the ranges of ESE are [.006, .013], [.008,
.018], and [.012, .037], respectively.

Selecting the functional form for the response surface is not
entirely arbitrary and may need to satisfy some restrictions.
In our case, the effects of k on critical values should dimin-
ish to 0 as N goes to infinity. After much experimentation
with alternative functional forms, a second-order polynomial
equation—which nests MacKinnon’s (1991) and satisfies the
asymptotic restriction—is found to fit the simulation data
well. The response surface equation is given as follows:

2 2
CRyx=To+ Y _m(1/TY +> @Ik = 1)/TY +ens, (3)

=1

=1

Table 1. Response Surface Estimation of Critical Values for the ADF Statistic
Coefficients No constant or trend Constant, no trend Constant and trend
& statistics 10% 5% 1% 10% 5% 1% 10% 5% 1%
To —1.609 -1.931 —2.564 —2566 —2.857 ~3.430 —-3.122 —3.406 -3 958
(.001)* (.001)* (.003)* (.001)* (.002)* (.004)* (.002)* (.003)* (.005)*
T —.285 —1.289 --2.906 -1.319 —2.675 —4.959 —2.850 —4.060 —7.448
(.143)* (162)* (.242)* (.205)* (.269)* (.540)* (.373)* (.464)* (.886)*
T —4.090 —-5.719 —-29773 —15.086 -23.558 -72.303 —15.813 -40.552 —104.947
(2.273)* (2.434)* (4.112)* (3.900)* (4.923)* (10.133)* (7.200)* (9.122)* (16.919)*
o .321 .380 .599 .667 .748 .842 .907 1.021 1.327
(.024)* (.032)* (.061)* (.035)* (.046)* (.072)* (.058)* (.069)* (150)*
23 -.525 —.722 -1.580 -.650 -1.077 —2.090 —.804 —1.501 -3.753
(.066)* (.082)* (.168)* (.093)* (.128)* (.227)* (171)* (-207)* (.584)*
R? .647 .770 .894 877 .924 .968 .866 .930 .969
G .009 .012 .026 .012 .015 .026 .020 .023 .039
Mean |é] .007 .009 .021 .009 011 .020 .015 .018 .029
Max |€] .022 .038 .087 .046 .049 .096 .068 .086 105
*Mean |€] .006 .009 .020 .008 .010 .019 .012 014 .025
*Max [€] .021 .036 .086 .029 .045 .070 .042 .045 .099
Restricted regression (MacKinnon 1991)
R2 100 .572 .864 .305 .753 915 417 .812 .903
b .014 .016 .029 .029 027 .042 .041 .038 .068
Mean |é| 011 .013 .022 .022 .021 .028 .031 030 .040
Max €| .039 .054 130 .081 .079 .279 115 104 557
*Mean |¢] 011 .013 .021 .021 .021 .023 .029 .028 .030
*Max |é| .039 .054 102 .081 .079 129 115 091 .189

NOTE  The response surface regression is given by Equation (3) Heteroscedasticity-consistent standard errors are in parentheses Significance i1s indicated by * for the 10% level and by *
for the 5% level &, indicates the estimated standard error of the regression Mean | €| gives mean absolute error of the response surface predictions versus estimated critical values, whereas
max |¢| gives maximum absolute error The no-constant-or-trend, constant-no-trend, and constant-and-trend statistics for the ADF test were respectively referred to as +, +,, and #r by Fuller
(1976)

* Computed from residual errors corresponding to 7 > 30 (too small T can lead to large errors ¢é)
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where CRy . is the critical value estimate for a sample size
N and lag k£, T = N — k indicates the effective number of
observations, and €y, is the error term. When higher-order
polynomial terms are included, they add little to the explana-
tory power. Equation (3) inciudes MacKinnon’s (1991) as a
special case in which & is fixed and equal to 1. Note that the
(k — 1)/T factor diminishes 10 O as the value of N increases
to infinity. Because both 1/T and (k— 1)/T — Qas N — o0,
the intercept term (7,) provides an estimate for the asymptotic
critical value.

Response surface regressions are reported in Table | for
three versions of the ADF test at the 10%, 5%. and 1% lev-
els. Various measures of data fit are computed, including the
squared multiple correlation coefficient (R?), standard error
of regression (7.), mean absclute error (mean [}, and max-
imum absolute error (max |€). In all the cases, both the 1/T
and (k — 1)/T variables are statistically significant. Exclud-
ing the (k — 1)/7 terms, as in MacKinnon’s (1991) restricted
regression, generally reduces the fit of the response surface.
The reduction can be substantial in some cases. The Reinsel—-
Ahn approximation for the response surface, explored by
Cheung and Lai (1993a), has also been considered but it fails
to yield an improved fit over Equation (3).

It is interesting to compare directly the estimates of critical
values here with those reported by MacKinnon (1991) and

(a) No constant or trend (10% test)

(b) No constant or trend (5% test)

Fuller (1976). In general, they are found to match closely
with one another when k£ = 1. Consider the test with a time
trend, for example. Our estimated critical values are —3.187
(10%), -3.506 (5%), and —4.154 (1%) for a sample size of
50 and -3.152 (10%), —3.451 (5%), and —4.044 (1%) for
a sample size of 100. Those from MacKinnon (1991) are
-3.180 (10%), —3.502 (5%), and —4.154 (1%) for a sample
size of 50 and —3.153 (10%), —3.455 (5%), and —4.053
(1%) for a sample size of 100. Both sets of estimates are
very close to Fuller’s (1976)— —3.18 (10%), —3.50 (5%),
and —4.15 (1%) for a sample size of 50 and —3.15 (10%),
—3.45 (5%). and —4.04 (1%) for a sample size of 100.

The close match disappears, however, when k > 1 and
lag-adjusted critical values are needed. Consider again the
ADF test with a time trend but with £ = 6. The estimates of
lag-adjusted critical values are —3.102 (10%), —3.423 (5%),
and —4.079 (1%) for a sample size of 50 and —3.108 (10%),
—3.404 (5%), and —3.989 (1%) for a sample size of 100.
These estimates clearly differ from those from MacKinnon
(1991) and Fuller (1976) with no lag adjustments. Note
that the differences between the estimates become smaller
in larger sample sizes. This follows from the property that
the response surface is a function of (k — 1)/T.

Finally, the Monte Carlo-estimated critical values, CR’s,
are plotted in Figure 1 for various ADF tests. These three-

(c) No constant or trend (1% test)
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Figure 1.  Plots of Monte Carlo-Estimated Critical Values for Various ADF Tests. N is the sample size, and k is the lag order parameter. In
each graph, the vertical axis gives the Monte Carlo-estimated critical values corresponding to different combinations of N and k.

o T e epyright © 2001 All Rights Reserved



280 Journal of Business & Economic Statistics, July 1995

dimensional graphs provide a sense of the numerical fluctu-
ations in the critical values as a function of the sample size
N and the lag order k. Following Tufte’s (1983, 1990) idea
of “small multiples,” the nine graphs are arranged ina 3 x 3
matrix to allow efficient comparison across types of tests and
across test sizes. The graphs show the presence of an unam-
biguously signed sample-size correction to the asymptotic
values when & = 1. This is consistent with the fact that both
7, and 7, which determine the pure sample-size effect, are
negatively signed in all response surfaces. The effect of ad-
ditional lags may be ambiguously signed, however: ¢; > 0,
but ¢, < 0 in all response surfaces, implying some balancing
effects from (k — 1)/T and [(k — 1)/T1*. This is apparent in
many of the graphs.

A comparison between graphs also shows the different
speeds at which finite-sample critical values can approach
their asymptotic levels. With a given test size, critical values
for the test with constant and trend approach their asymptotic
limits most slowly, whereas those with no constant or trend
approach most rapidly. For the latter, critical values fora 10%
test with no constant or trend are, indeed, nearly invariant to
N and k. This contrasts most sharply with the case of a 1%
test with constant and trend, for which critical values can be
very sensitive to N and k.

3. CONCLUSION

In this study, response surface analysis is used to obtain ap-
proximations to the finite-sample critical values for the ADF
test. Previous studies estimating the critical values for the
ADF test have largely ignored their possible dependence on
the lag order. This study shows that the lag order, in addition
to the sample size, can affect the finite-sample behavior of the
ADF test. Proper correction for the lag effect in implement-
ing the ADF test is therefore desirable. Because appropriate
critical values for the ADF test can be easily computed with
reasonable accuracy from response surface equations for any
sample size and lag length, the analysis here should be useful
for researchers in practical applications.

ACKNOWLEDGMENTS

This article has benefited from valuable comments from
Alastair Hall, two anonymous referees, an associate editor,
and the editor of this journal. All remaining errors are ours.

The research was supported by the GICES at the University
of California at Santa Cruz.

[Received August 1993. Revised September 1994.]

REFERENCES

Cheung, Y.-W,, and Lai, K. S. (1993a), “Finite-Sample Sizes of Johansen’s
Likelihood Ratio Tests for Cointegration,” Oxford Bulletin of Economics
and Statistics, 55, 313-328.

(1993b), “Lag Order and the Finite-Sample Behavior of the Aug-

mented Dickey—Fuller Test,” Working Paper 269, University of California

at Santa Cruz, Dept. of Economics.

(in press), “Lag Order and Critical Values of a Modified Dickey-
Fuller Test,” Oxford Bulletin of Economics and Statistics, 57

Dickey, D. A., and Fuller, W. A. (1979), “Distribution of the Estimators for
Autoregressive Time Series With a Unit Root,” Journal of the American
Statistical Association, 74, 427-431.

Encsson, N. R. (1991), “Monte Carlo Methodology and the Finite Sample
Properties of Instrumental Variables Statistics for Testing Nested and Non-
nested Hypotheses,” Econometrica, 59, 1249-1277

Fuller, W. A. (1976), Introduction to Statistical Time Series, New York John
Wiley.

Hall, A. (1994), “Testing for a Unit Root 1n Time Series With Pretest Data-
Based Model Selection,” Journal of Business & Economic Stanstics, 12,
461-470.

Hendry, D. F. (1979), “The Behaviour of Inconsistent Instrumental Variables
Estimators in Dynamic Systems With Autocorrelated Errors,” Journal of
Econometrics, 9, 295-314.

(1984), “Monte Carlo Experimentation in Econometrics,” in Hand-
book of Econometrics (Vol. 2), eds. Z. Griliches and M D Intriligator,
Amsterdam: North-Holland, pp 937-976.

Hendry, D. F,, and Harrison, R. W. (1974), “Monte Carlo Methodology and
the Smal! Sample Behaviour of Ordinary and Two-Stage Least Squares,”
Journal of Econometrics, 2, 151-174.

Hendry, D. F, and Srba, F. (1977), “The Properties of Autoregressive In-
strumental Variables Estimators in Dynamic Systems,” Econometrica, 45,
969-990.

MacKinnon, J G. (1991), “Critical Values for Cointegration Tests,” in
Long-Run Economic Relationships: Readings in Contegranon, eds.
R. F. Engle and C. W. J. Granger, New York: Oxford University Press,
pp. 266-276

(1994), “Approximate Asymptotic Distribution Functions for Umt-
Root and Cointegration Tests,” Journal of Business & Economic Statistics,
12, 167-176.

Myers, R. H,, Khuri, A. I, and Carter, W. H. (1989), “Response Surface
Methodology' 1966—1988,” Technometrics, 31, 137-157.

Rohatgi, V. K. (1984), Sratistical Inference, New York: John Wiley.

Said, S., and Dickey, D. A. (1984), “Testing for Unit Roots in Autoregressive-
Moving Average Models of Unknown Order,” Biometrika, 71, 599-607.

Tufte, E. R. (1983), The Visual Display of Quanntanve Information,
Cheshire, CT- Graphics Press.

(1990}, Envisioning Information, Cheshire, CT: Graphics Press.

Copyright © 2001 All Rights Reserved



