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This study examines several important practical issues concerning nonparametsic 
estimation of the innovation variance for the Phillips-Perron (PP) test. A Monte 
Carlo study is conducted to evaluate the potential effects of kernel choice, data- 
based bandwidth selection, and prewhitening on the power property of the PP test in 
finite samples. The Monte Carlo results are instructive. Although the kernel choice 
is found to make little difference, data-based bandwidth selection and prewhitening 
can lead to power gains for the PP test. The combined use of both the Andrews 
(1991, Econornetrica 59, 817-858) data-based bandwidth selection procedure and 
the Andrews and Monahan (1992, Econornetrica 60, 953-966) prewhitening pro- 
cedure perfoms particularly well. With the combined use of these two procedures, 
the PP test displays relatively good power in comparison with the augmented Dickey- 
Fuller test. 

1. INTRODUCTION 

The augmented Dickey-Fuller (ADF) test and the Phillips-Perron (PP) test 
(Dickey and Fuller, 1979; Phillips, 1987; Phillips and Perron, 1988) are two 
widely applied unit-root tests. An issue concerns the choice of a lag truncation 
parameter in either test-the autoregressive (AR) lag in the ADF test or the band- 
width (autocovariance lag) in the PP test. The issue is important because the 
performance of these tests can be sensitive to the lag choice. Hall (1994) and Ng 
and Perron (1995) have shown that data-based procedures with usual information 
criteria can be useful for selecting the ADF lag parameter and lead to power gains. 
Because the PP test differs from the ADF test in the treatment of serial correla- 
tion, the information-based method does not apply to the PP test. 

Andrews (1991) considered the problem of optimal bandwidth selection for 
spectral density estimation. Based on an asymptotic truncated mean squared error 
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(MSE) criterion, an optimal data-based bandwidth selection procedure is devel- 
oped for given kernels. Andrews's procedure requires knowledge of the error 
structure, which is usually obtained, albeit imperfectly, from fitting approximat- 
ing parametric models. Newey and West (1994) proposed an alternative method 
for estimating the optimal bandwidth from truncated sample autocovariances. 
This procedure needs no direct estimation of the error structure, but it still in- 
volves an initial choice of a truncation parameter. Monte Carlo evidence pre- 
sented by Andrews (1991) andNewey and West (1994) shows that either procedure 
can improve size properties of some test statistics. In this study, these two pro- 
cedures are evaluated and compared to see if they can help improve the power of 
the PP test. 

The study also explores the effects of prewhitening on the test power. Andrews 
and Monahan (1992) introduced a class of prewhitened kernel estimators of vari- 
ance, shown to yield test statistics with better accuracy. The asymptotic bias of 
kernel estimators depends on the smoothness of the spectral density function at 
frequency zero. The data are first transformed to reduce temporal dependence 
and give a flatter spectral density function. A kernel estimator for the original data 
is later obtained by applying the inverse of the transformation. The prewhitening 
procedure is simple to apply. If it is found to help improve test power, the finding 
can provide good support for its use. 

2. BANDWIDTH SELECTION AND PREWHITENING 

Consider the following regression model for a time series {x,): 

x f = p + P x t - , + u r ,  ( t = 1 , 2,...,T), (1) 

where u, is the innovation term. To test for a unit root, the regression t-statistic for 
the null hypothesis (Ho:P = I), denoted by tg, is adjusted nonparametrically to 
account for possible serial correlation in u,. Phillips (1987) suggested the use of 
the following PP test statistic: 

with s: and s: being innovation variance estimators given by 

where k (  .) is a kernel and tTis its bandwidth parameter (see Phillips and Perron, 
1988, for the case that includes a time trend). The actual number of autocovari- 
ances used and their respective weights for computing s; depend on the kernel 
applied and the 6 ,  parameter. 
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The Bartlett kernel is often used to compute the PP statistic, and (4) becomes 

where 4 equals tT- 1 for integer values of 5,. Using the Bartlett kernel can 
ensure nonnegativity of the variance estimate-a highly desirable property stressed 
by Newey and West (1987). Other choices of kernels besides the Bartlett kernel 
are possible, such as the Parzen and the quadratic spectral (QS) kernels, both of 
which can generate positive semidefinite estimators in finite samples. Indeed, 
Andrews (1991) recommended using the QS kernel for its asymptotic efficiency. 

Aside from kernel selection, a choice of the bandwidth parameter, t T ,  is needed 
for implementing the PP test. As Phillips (1987) observed, the actual choice of tT 
for a specific sample is an empirical matter. In this study, two data-dependent 
procedures devised by Andrews (1991) and Newey and West (1994) are applied; 
these procedures choose 5, to minimize some asymptotic MSE criteria, as dis- 
cussed by Priestley (1981) (see also Robinson, 1991, for cross-validation analy- 
sis). Andrews's bandwidth selection procedure follows a rule-of-thumb method 
popularized by Silverman (1986) in his book on density estimation. 

In general, the optimal bandwidth parameter is shown to be given by 

where 

with 0 < ck= lim~,l,o[l - k ( y ) ] / ly 14 < co for some q > 0. The relevant value 
of q can vary across kernels: q = 1 for the Bartlett kernel; q = 2 for the Parzen and 
QS kernels. The values of c ,  for the Bartlett, Parzen, and QS kernels are com- 
puted to be 1.1447, 2.6614, and 1.3221, respectively. For a given kernel, (6)-(8) 
yield the optimal value of t,, provided that the values of f ( 4 )  and f(O) can be 
obtained. If the parametric structure of the innovation process, u,, is known a 
priori, these values can be straightforwardly calculated from (7). Unfortunately, 
such required information about u, is typically not available in practice. 

Andrews (1991) suggested estimating f (4)andf by fitting approximating AR 
models to 2,. Using the model coefficients estimated, the implied values of both 
f (4)andf can be obtained. Newey and West (1994) proposed an alternative way 
to estimate f (4) andf (O) by replacing the infinite sum in (7) with a truncated finite 
sum indexed by an autocovariance lag parameter, n. For the choice of n, Newey 
and West (1994) established its maximum rate of increase (a)relative to T. That 
is, n / T m-+ 0 as n -+ cowith a = $ (Bartlett), & (Parzen), or & (QS). Following 
Schwert's (1989) 4,-rule formulation, the Newey-West (NW) procedure consid- 
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ered choosing n as n = INT[v(T/lOO)"], where 7 is a proportionality parameter 
to be specified by researchers. 

Andrews and Monahan (1992) recommended the use of prewhitening with a 
low-order AR regression before applying any bandwidth selection procedure. 
The prewhitened kernel estimators obtained are shown to yield more accurately 
sized test statistics than standard kernel estimators. In this paper, the impact of 
prewhitening on test power is studied. The prewhitening procedure serves to 
reduce the temporal dependence in innovations by data filtering before applying 
a kernel estimator. In the univariate case, least-squares estimation of an AR(p) 
model is first conducted on GI: 

P 

9 1 = A r G , + G  ( t = p + 1 , ...,T). 
r= 1 

A conventional kernel estimator, along with the choice of C T ,  is next obtained 
based on 9," instead of 9,. Finally, the prewhitened kernel estimator is constructed 
using the inverse transformation, [B;/(l - Cf=lA,)]', from the conventional 
kernel estimator. 

3. MONTE CARL0 ANALYSIS AND RESULTS 

Because of the intractability of finite-sample properties, the Monte Carlo method 
is used to evaluate the effects of the kernel choice, data-based bandwidth selec- 
tion, and prewhitening on the power of the PP test. In the Monte Carlo analysis, 
the data-generating process (DGP) is specified as 

( 1  - +L)(1 - pL)x, = (1 - OL)e,, (10) 

where L is the lag operator, p is the largest AR root ( p  = 1 when there is a unit 
root), 4 and 0 are, respectively, AR and MA (moving average) root parameters 
capturing additional data dependence, 141 < 1 and 1191 < 1; and e, is a random 
error term. The experimental design covers different possible combinations of 
(p,~,O,k(~),T,~T)~ithp={1.0,0.95,0.9,0.85),~={-0.8,-0.4,0.4,0.8),O= 
{-0.8,-0.4,0.4,0.8), k(.) = {Bartlett, Parzen, QS}, and T = 100. The Andrews 
and NW procedures are both used to choose ST .  For the latter procedure, three 
different values of 7 (=4, 8, and 12) are considered. To facilitate comparison, 
Schwert's (1989) mechanical e4-, e8-,and el'-rules are also applied to choose S T .  
Hence, there are altogether seven bandwidth selection rules under examination. 
To allow for different effects of the AR and MA roots on the PP test, 0 = 0 when 
4 # 0, and 4 = 0 when 0 # 0. This also reduces the number of possible combi- 
nations to a manageable level. Tests with and without a time trend are carried out. 
Coupled with the cases with and without prewhitening, the design here represents 
a total of 2,688 simulation experiments. All the Monte Carlo results reported 
below are based on 30,000 replications in each experiment. 

Finite-sample critical values are obtained and used to evaluate power proper- 
ties. For each given kernel and each bandwidth selection rule, both the 5% and 
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10% critical values for the PP test with or without prewhitening were calculated 
as quantiles directly in simulation under the null hypothesis of a unit root by 
setting p = 1 in the DGP. The standard errors of the critical value estimates are 
computed following Rohatgi (1984); they mostly range from 0.01 to 0.02. 

To analyze the power properties, Monte Carlo experiments are performed un- 
der the alternative hypothesis of p < 1. Specifically, p = {0.95,0.9,0.85}. In each 
replication of an experiment, the Andrews and NW procedures are applied to 
determine automatically the value of ST without presetting it. Because the opti- 
mal values of ST for both procedures do not have to be integer values, we find it 
convenient to treat ST as real-valued. The exercise is repeated for different ker- 
nels and for cases with and without prewhitening. For the Andrews procedure, the 
approximating parametric model used is an AR(1) model, which is recommended 
by Andrews and Monahan (1992) for its parsimony and computational simplicity. 
For the prewhitening procedure, an AR(1) model is also employed as the pre- 
whitening process. Following Andrews andMonahan (1992), the value ofA (=A,) 
is restricted in estimation to be less than 0.97, avoiding the situation in which the 
data transformation under prewhitening is close to singularity. Because the 5% 
and 10% tests produce qualitatively similar results, the results for the 5% test 
only will be reported. 

The power performance of the PP test is compared directly with that of the 
ADF test. DeJong, Nankervis, Savin, and Whiteman (1992) examined the rela- 
tive power of the PP and ADF tests using DGP's similar to those studied here. In 
contrast to the ADF test, the PP test is found to suffer from exceptionally low 
power in the presence of positive serial correlation. These authors used arbitrarily 
fixed bandwidths and no prewhitening. This study reevaluates the relative power, 
with data-based bandwidth selection and prewhitening being applied to the PP 
test. For the ADF test, the lag parameter is selected based on Schwarz's (1978) 
information criterion (SIC). 

To conserve space, some general results obtained are summarized but not pre- 
sented here-detailed results were tabulated by Cheung and Lai (1995a). First, 
all PP tests perform better with higher power when the nuisance AR (MA) root is 
negative (positive) than when it is positive (negative), independent of the band- 
width selection procedure used and whether prewhitening is applied. Second, the 
results across kernels exhibit no systematic pattern. A kernel may yield slightly 
more power in some situations and slightly less power in alternative situations 
than the other kernels. Hence, no unambiguous ranking can be determined among 
the different kernels. 

Table 1 reports results for several cases: the Schwert e4-rule without prewhit- 
ening, the Andrews rule without prewhitening, the NW rule without prewhiten- 
ing, and the Schwert e4-rule with prewhitening. All power estimates are expressed 
in percentage. The results suggest that using prewhitening alone can help improve 
the power of the PP test in a number of cases. On the other hand, using data-based 
bandwidth selection alone improves little the test power in general. Stock (1994) 
reported similar Monte Carlo experiments in which the Andrews selection proce- 
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TABLE1. Test power under either data-based bandwidth selection 
or prewhitening but not botha 

Data-based procedure Prewhitening 

Nuisance root P Schwert Andrews NW Schwert 

(a)AR innovations 
4 = -0.8 0.95 17.1 17.5 16.8 17.3 

0.90 42.2 43.2 40.7 42.5 
0.85 69.4 71.5 65.9 69.7 

-0.4 0.95 18.2 17.7 18.0 18.2 
0.90 47.2 46.2 46.5 47.2 
0.85 79.5 78.5 78.4 79.4 

0.4 0.95 9.0 9.0 8.0 10.4 
0.90 21.0 21.1 18.4 23.7 
0.85 40.4 41.7 35.3 42.4 

0.8 0.95 3.1 3.5 3.5 9.3 
0.90 5.2 5.1 5.8 15.8 
0.85 9.2 8.0 9.3 21.7 

(b) MA innovations 
8 = -0.8 0.95 9.7 9.4 8.8 12.2 

0.90 22.9 22.3 19.9 27.4 
0.85 43.5 43.6 37.4 47.5 

-0.4 0.95 10.3 10.8 9.4 11.6 
0.90 25.0 26.7 22.7 27.4 
0.85 47.8 5 115 43.8 49.6 

0.4 0.95 18.4 18.0 18.1 18.4 
0.90 47.9 47.3 46.9 47.8 
0.85 79.9 79.7 78.7 79.9 

0.8 0.95 15.0 15.4 14.6 15.0 
0.90 33.1 36.1 31.1 33.1 
0.85 53.9 56.0 51.0 54.0 

"pis the largest AR root in the DGP, 4 is the nuisance AR root, and 0 is the nuisance MAroot. The case oSSchwert's 
mechanical (,-rule for bandwidth selection serves as a benchmark for comparison. The columns "Andrews" and 
"NW" give the power estimates based on the Andrews procedure and the Newey-West procedure (using the P4-rule 
for n),  respectively. All power estimates are expressed in terms of percentage and obtained using 30,000replications 
in simulations. 

dure was applied without prewhitening. The results presented next indicate that the 
Andrews procedure can perform better when accompanied by prewhitening. 

Further results related to the use of data-based bandwidth selection and pre- 
whitening are presented using graphs. Figure 1 shows the relative test power of 
the PP test (with prewhitening and with and without data-based bandwidth se- 
lection) and the ADF test (using the SIC for data-based lag selection) in the 
presence of AR innovations, whereas Figure 2 displays the corresponding results 
in the presence of MA innovations. In the case of no data-based bandwidth se- 
lection for the PP test, the results are based on the t4-rule. The results shown in all 
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0.85 0.90 0.95 0.85 0.90 0.95 

Largest AR root Largest AR root 

Largest AR root Largest AR root 

FIGURE1. The relative power of the PP test and the ADF test under AR innovations. 4 is 
the nuisance AR root. The PP test uses the QS kernel in this set of reported results. The 
dashed line indicates the case of the ADF test with.the SICbeing used for lag selection. The 
dotted line corresponds to the PP test with prewhitening but without any data-based band- 
width selection. The dot-dash line corresponds to the PP test with both prewhitening and 
the Newey-West procedure (using the e4-rule to select n). The solid line gives the case of 
the PP test with both prewhitening and the Andrews procedure. 

the graphs are from tests with no time trend. Tests with and without a time trend 
share qualitatively similar patterns of results. 

The results displayed in Figure 1indicate that prewhitening, along with band- 
width selection, can help improve the power of the PP test, and the improvement 
is especially noticeable when 4 >0, although not so when 4 <0. Because the PP 
test is found to have relatively low power for 4 > 0, the possible improvement in 
test power in this situation is particularly useful. Indeed, the best power improve- 
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Largest AR root LargestAR root 

0.85 0.90 0.95 0.85 0.90 0.95 

Largest AR root LargestAR root 

FIGURE2. The relative power of the PP test and the ADF test under MA innovations. 0 is 
the nuisance MA root. The PP test uses the QS kernel in this set of reported results. The 
dashed line indicates the case of the ADF test with the SIC being used for lag selection. The 
dotted line corresponds to the PP test with prewhitening but without any data-based band- 
width selection. The dot-dash line corresponds to the PP test with both prewhitening and 
the Newey-West procedure (using the e4-rule to select n). The solid line gives the case of 
the PP test with both prewhitening and the Andrews procedure. 

ment one can obtain is when the Andrews procedure is applied in conjunction 
with the prewhitening procedure. It follows that the bandwidth selection and 
prewhitening procedures can reinforce one another in enhancing the power of the 
PP test. 

It may not be too surprising that the Andrews procedure works well for AR 
errors because it is designed for AR models. Seeing how well this procedure can 
work for MA errors is therefore instructive. The results discussed next support 
that the procedure is useful even for MA errors. 
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On the use of prewhitening, Figure 2 shows that the Andrews-Monahan pro- 
cedure helps improve the power of the PP test even under MA dependence. The 
power gains can be observed for DGP's with 8 < 0, albeit not so for those with 
8 > 0. Given that the prewhitening filter used is an AR one, the finding is inter- 
esting. According to Andrews and Monahan (1992), the use of low-order AR 
models to do the prewhitening does not aim at estimating the true model. Its use 
is rather a tool to "soak up" some of the temporal dependence in 9, and to work 
with 9T, which is closer to being white noise than 9,. The results here support the 
usefulness of the Andrews-Monahan prewhitening procedure. Moreover, the per- 
formance of the prewhitening procedure can again be enhanced further if it is 
used in combination with the Andrews procedure. 

DeJong, Nankervis, Savin, and Whiteman (1992) reported that the ADF test 
displays better power than the PP test when positive serial correlation (4> 0 or 
0 < 0) is present; the opposite is true when negative serial correlation (4< 0 or 
8 > 0) exists. Our results indicate that the use of data-based bandwidth selection 
alone does not alter the relative power of the ADF and PP tests. Adifferent picture 
appears, however, when prewhitening is also used. As shown in Figures 1and 2, 
the PP test with prewhitening can perform better than or at least as well as the 
ADF test in most cases. It follows that, with the combined use of prewhitening 
and data-dependent bandwidth selection, the PP test can be a useful alternative to 
the ADF test in terms of comparative power. 

Aremark is in order. The preceding results on test power are obtained based on 
finite-sample critical values and not asymptotic ones. Different statistical proce- 
dures can differ much in their susceptivity to finite-sample bias (see, e.g., Cheung 
and Lai, 1995b, 1995~). A test can show spuriously better power than others just 
because the test has poor size properties in finite samples, with its empirical test 
size greatly exceeding its nominal level. After correcting for the size distortion, 
this test may actually have lower power than the others. Hence, comparing test 
power using asymptotic critical values can be misleading. In our case, the ADF 
and PP statistics display significantly different finite-sample behavior, even though 
they share the same asymptotic distribution. Given that finite-sample critical val- 
ues can readily be estimated through simulation, asymptotic critical values are 
not applied in measuring test power. 

To provide more information about bandwidth selection, Table 2 contains 
some descriptive statistics for the empirical distributions of the bandwidth es- 
timates from the Andrews and NW procedures for those results presented in 
Figures 1 and 2. In general, the NW procedure tends to yield larger bandwidth 
estimates than the Andrews procedure. The bandwidth estimates from the for- 
mer procedure also exhibit higher variability than those from the latter one in 
almost all cases. In terms of skewness and kurtosis, the distribution of the band- 
width estimates is more skewed and has much flatter tails for the NW proce-
dure than the Andrews procedure. All in all, the Andrews procedure seems to 
produce more stable bandwidth estimates than the NW procedure. It should be 
noted that no "true" values of the optimal bandwidths can be computed in the 
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TABLE2. Distribution of bandwidth estimates from data-based proceduresa 

Standard 
Mean Deviation Skewness Kurtosis 

Nuisance root p Andrews NW Andrews NW Andrews NW Andrews NW 

(a)AR innovations 
4 = -0.8 0.95 2.56 6.74 0.78 0.26 -0.34 -2.15 3.03 18.76 

0.90 1.92 6.68 0.71 0.33 -0.02 -2.17 2.50 15.59 
0.85 1.46 6.57 0.56 0.43 0.22 -2.31 2.85 15.02 

-0.4 0.95 1.19 5.18 0.43 1.09 0.03 -1.30 2.71 5.03 
0.90 1.21 5.30 0.42 1.01 -0.07 -1.44 2.80 5.62 
0.85 1.19 5.26 0.40 1.03 -0.08 -1.43 2.85 5.54 

0.4 0.95 1.01 5.10 0.39 2.90 0.22 15.30 2.94 772.31 
0.90 1.00 5.39 0.39 3.50 0.25 22.28 2.92 129.38 
0.85 1.00 5.74 0.40 3.08 0.26 3.81 2.86 63.80 

0.8 0.95 1.37 4.42 0.54 1.73 0.31 0.48 3.05 3.89 
0.90 1.37 4.53 0.54 1.83 0.30 0.62 2.96 4.24 
0.85 1.36 4.70 0.54 2.00 0.27 0.74 2.87 4.60 

(b) MA innovations 
6'=-0.8 0.95 2.36 7.45 0.37 6.56 0.00 14.91 3.36 563.63 

0.90 2.36 8.13 0.37 10.11 0.04 35.74 3.28 223.38 
0.85 2.36 8.65 0.36 7.60 0.07 9.32 3.24 209.18 

-0.4 0.95 1.33 5.83 0.43 3.78 -0.20 8.44 2.90 192.29 
0.90 1.35 6.14 0.42 3.77 -0.22 4.75 2.98 63.31 
0.85 1.35 6.55 0.41 6.09 -0.23 7.80 3.04 618.85 

0.4 0.95 0.82 5.25 0.33 1.16 0.29 -1.15 2.94 4.63 
0.90 0.80 5.28 0.34 1.11 0.32 -1.26 2.83 4.89 
0.85 0.77 5.15 0.33 1.17 0.33 -1.12 2.79 4.45 

0.8 0.95 0.62 5.31 0.28 1.32 0.48 0.97 3.02 64.22 
0.90 0.54 4.87 0.25 1.64 0.52 3.02 3.03 101.49 
0.85 0.52 4.84 0.25 2.70 0.56 33.61 3.09 299.18 

"p is the largest AR root in the DGP, 6 is the nuisance AR root, and 0 is the nuisance MA root. The columns 
"Andrews" and "NW" give the relevant descriptive statistics of the empirical distributions of the bandwidth esti- 
mates from the Andrews procedure and the Newey-West procedure, respectively. The skewness is computed as the 
third sample moment standardized by the cube of the standard deviation. The kurtosis is the fourth moment divided 
by the square of the variance. For a normal distribution, the skewness coefficient equals 0 and the kurtosis coeffi- 
cient equals 3. For the skewness estimates, the standard errors range from 0.001 to 0.005 in cases for the Andrews 
procedure and from 0.002 to 0.058 in cases of the NW procedure. For the standard deviation estimates, their standard 
errors range from 0.001 to 0.003 in cases for the Andrews procedure and from 0.003 to 0.44 in cases of the NW 
procedure. 

preceding cases even though the DGP's are given and known. This is because 
the bandwidth selection procedures are applied to estimated residual series, the 
exact parametric structure of which cannot be determined, especially when pre- 
whitening is used. 

The performance of data-based bandwidth selection and prewhitening is also 
evaluated for T = 50 and 200; these values cover a range of sample sizes typical 
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of those for macroeconomic series examined in applied studies. As expected, the 
power of the PP test increases with the sample size, but the basic results described 
earlier do not change. Prewhitening can improve the power of the PP test, and it 
can work even better when used together with Andrews's bandwidth selection 
procedure. The magnitude of potential power gains diminishes as the sample size 
decreases, however. When T = 50, the power gains, albeit obtainable, become 
rather small. 

The analysis in this paper focuses on the power property of the PP test. Addi- 
tional Monte Carlo experiments have been done to evaluate the effects of the 
kernel choice, data-based bandwidth selection, and prewhitening on the size prop- 
erty for T = 50, 100, and 200. In general, the results on test size share somewhat 
similar patterns with those on test power. The choice of different kernels influ- 
ences little the size property of the PP test (cf. Kim and Schmidt, 1990). On the 
other hand, prewhitening can clearly help improve the size property, but not much 
so for data-based bandwidth selection when used alone. Using the Andrews pro- 
cedure together with prewhitening may improve further the size property, al- 
though the possible size improvement is merely marginal, unlike the results on 
the power property. A caveat is that, even with the improved size property, the PP 
test still shows substantial size distortion in the presence of strong, negative serial 
correlation. 

Perron and Ng (1995) showed that the size problem for the PP test is inherent 
in its use of kernel-based spectral density estimators. These authors proposed a 
modified PP test, which can yield good size properties when used in combination 
with an AR spectral density estimator. Monte Carlo results on power are also 
reported, illustrating that the modified test is more powerful than the ADF test in 
the presence of positive serial correlation. In contrast to the results here, however, 
the modified PP test can fail to show better power than the ADF test under neg- 
ative serial correlation. 

4. CONCLUSION 

Several issues concerning nonparametric estimation of the innovation variance 
for the PP test have been investigated. These issues have much bearing on the 
practical implementation of the test. A comprehensive Monte Carlo study is con- 
ducted to evaluate the potential effects of kernel choice, data-based bandwidth 
selection, and prewhitening on the power property of the PP test in finite samples. 
The study considers three different kernels (Bartlett, Parzen, and QS) and two 
data-based bandwidth selection procedures (Andrews and Newey-West). The 
Andrews-Monahan procedure is used for prewhitening. The Monte Carlo results 
are instructive. Although the kernel choice is found to make little difference, 
data-based bandwidth selection and prewhitening can lead to power gains for the 
PP test. According to the results obtained, the combined use of both the Andrews 
bandwidth selection procedure and the Andrews-Monahan prewhitening proce- 
dure is particularly effective in raising test power. With the combined use of 
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prewhitening and data-based bandwidth selection, moreover, the PP test is found 
to show relatively good power in comparison with the ADF test. 

The results in this paper are significant in highlighting two possible avenues to 
power improvements for the PP test, namely, data-based bandwidth selection and 
prewhitening. The study itself can be viewed as a step toward that direction. 
Developing alternative data-based bandwidth selection and prewhitening pro- 
cedures, which may help improve test power further, should be useful and im- 
portant. In related work, Lee and Phillips (1994) devised a new prewhitening 
procedure. Unlike the Andrews-Monahan procedure, which uses simple AR fil- 
ters, the Lee-Phillips procedure involves ARMA filters. The orders of ARMA 
filters require identification and estimation using the Hannan-Rissanen (1982) 
method before prewhitening. The Lee-Phillips procedure is shown to improve 
the power of the PP test. The relative performance of the different prewhitening 
procedures is an area of future research. Exploring new bandwidth selection pro- 
cedures can also be fruitful. 
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