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INTRODUCTION 

Financial economists always strive for better understanding of the 
market dynamics of financial prices and seek improvement in modeling 
them. Although there have been many studies devoted to analyze high 
frequency dynamics of financial prices, only recently have low frequency 
dynamics received attention. An issue of concern is the behavior of 
financial prices over long versus short horizons-whether the seemingly 
random movements in financial prices over short horizons contain 
detectable structures over long horizons. In this study a specific form 
of dynamics called “fractal” [Mandelbrot (1977a, b)] is explored. A time 
series having fractal structure is characterized by long-term dependence 
and nonperiodic cycles. 

Several studies have examined the cyclic long-term dependence 
property of financial prices, including stock prices [Aydogan and Booth 
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(1988); Greene and Fielitz (1977)], gold prices [Booth, Kaen, and 
Koveos (1982a)], exchange rates [Booth, Kaen, and Koveos (1982b)], 
and commodity and stock index futures [Helms, Kaen, and Rosenman 
(1984); Milonas, Koveos, and Booth (1985)l. These studies use the 
classical rescaled range (R/S) analysis, first proposed by Hurst (195 1) 
and later refined by Mandelbrot and Wallis (1969) and Wallis and 
Matalas (1970), among others. A problem with the classical R/S analysis 
is that the distribution of its regression-based test statistic is not well 
defined and the analysis is not robust to possible heteroskedasticity or 
short-term dependence in data. As a result, Lo (1991) proposed the use 
of a modified R/S procedure with improved robustness. The modified 
R/S procedure has been applied to study dynamic behavior of, e.g., 
stock prices [Lo (1991); Cheung, Lai, and Lai (1994)], gold prices 
[Cheung and Lai (1993)], and Eurodollar and T-bill futures prices [Lee 
and Mathur (1992)l. Both the classical and the modified R/S analyses 
serve to uncover nonperiodic long cycles in the corresponding data, and 
their test statistics are all derived from some standardized range measure 
of cumulative price movements-the difference between the largest and 
the smallest cumulative price movements over a sample period. Without 
modeling fractal structure explicitly, these R/S analyses provide indirect 
tests for fractal dynamics. 

This study estimates fractional structure directly based on fractional 
time series models. Specifically, an interesting class of fractional models 
investigated by Geweke and Porter-Hudak (1983), Granger and Joyeux 
(1 980), Hosking (198 1 ), and Mandelbrot (1 977b) is considered. The 
appeal of this class of fractional models is its ability to capture a wide 
range of long-term dependence with a single parameter. This parameter 
is sometimes referred to as the fractional parameter, which is amenable 
to estimation and statistical hypothesis testing. In the present study, a 
semi-nonparametric procedure devised by Geweke and Porter-Hudak 
(1983) is employed to estimate the fractional parameter. This semi- 
nonparametric procedure is useful because it is not sensitive to short- 
term dependence, nonnormal innovations, or variance nonstationarity. 
Monte Carlo results reported by Cheung (1993) support that the 
Geweke-Porter-Hudak method is robust to short-term dependence as 
well as variance shifts and conditional heteroskedastic effects. The ro- 
bustness property with respect to nonstationarity in variance is especially 
attractive, given that financial prices have generally been found to display 
such nonstationarity. As noted by Milonas, Koveos, and Booth (1985), 
analyses of futures price dynamics are particularly prone to the problem 
of variance nonstationarity. Because of the maturity effect [Samuelson 
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(1965)], the variance of price changes can change systematically with the 
length of time to maturity of the futures contract. With the robustness 
of the Geweke- Porter-Hudak procedure, nonetheless, reliable evidence 
of fractal structure can be obtained and the problem of variance 
nonstationarity is minimized. 

Uncovering fractal structure in currency futures prices is interesting 
in various respects. Studies by Diebold and Rudebusch (1 989) and Shea 
(199 1) find that economic fundamentals such as national output and 
interest rates contain fractal structure. It is thus interesting to examine 
whether fractal structure is also present in financial prices such as 
currency futures prices, reflecting the fractal dynamics in economic 
fundamentals. In addition, the relevance of fractal behavior can have 
further implications for time series modeling. When futures markets 
exhibit fractal dynamics, proper modeling of the dynamics using frac- 
tional processes can potentially improve forecasts over usual time series 
forecasting models. This is particularly relevant to long-term forecasts. 
Furthermore, if fractal structure is indeed present in currency futures, 
statistical inferences concerning currency futures pricing models based 
on standard testing procedures may not be valid. Moreover, theoretical 
and empirical models that allow for fractal price dynamics should be 
explored. Mandelbrot (1971) observes that in the presence of long- 
term dependence implied by fractal structure, the arrival of new market 
information cannot be fully arbitraged away and martingale models of 
asset prices cannot be obtained from arbitrage. Mandelbrot ( 197 1) also 
shows that variability in the imperfectly arbitraged price may not be 
stationary and the return distribution is nonnormal. 

SOME STUDIES ON NONLINEAR DYNAMICS 

Analyses of nonlinear price dependence have enjoyed much attention 
recently. The apparently growing interest in nonlinear dynamics arises 
from the observation that the often wide and nonperiodic cyclical 
fluctuations of asset prices cannot be adequately captured by linear 
models. Usual findings of leptokurtosis in asset returns may be further 
indirect evidence of nonlinear dynamics. Scheinkman and LeBaron 
( 1989) observe that conditional heteroskedastic processes can exhibit 
dependence similar to that of chaotic systems. Empirical evidence of 
chaotic dynamics or conditional heteroskedastic dependence in stock 
prices and exchange rates has been presented by Hsieh (1989, 1991), 
Mayfield and Mizrach (1992), and Scheinkman and LeBaron (1989). 
In addition, Frank and Stengos (1 989) report evidence of conditional 
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heteroskedastic effects and chaotic structures in both gold and silver 
prices. Blank ( 199 1) and DeCoster, Labys, and Mitchell (1992) also find 
evidence of chaotic dynamics in futures markets for several commodities 
and the S&P 500 stock index. 

The fractal dynamics examined in this study may be viewed as a 
specific form of nonlinear dynamics. Mandelbrot and Van Ness (1968, 
pp. 430-432) have discussed the nonlinearlity in the extrapolative and 
interpolative forecasts for fractional processes. Mandelbrot and Van 
Ness note that long samples of fractional series will show variable 
trends in extrapolation and interpolation [see also Mandelbrot (1977b, 
pp. 252)I.l In addition, a series having fractal structure exhibits a special 
feature that does not occur for linear processes. A fractal series displays 
long cycles that are not periodic. The long cycles shown in different 
samples of the same fractal series have different wavelengths. 

FRACTIONAL STATISTICAL ANALYSIS 

Since Mandelbrot's ( 1977a, b) discussion of the fractal structure of 
fractional processes, further interesting properties of fractional processes 
have been explored by Granger and Joyeux ( 1980); Hosking ( 198 1); and 
Sowell (1 990). All these studies commonly examine members of a family 
of fractional processes called fractionally differenced processes. Be- 
cause of their flexibility and simplicity in specification, these fractional 
processes are useful for modeling low-frequency dynamics. 

Let {XI, x2, . . . , XT} be a set of time series data. A general class of 
fractional processes is described by 

(1) 

where B(L)  = 1 - P I L  - ... - PpLP and D ( L )  = 1 + 61L + ...  + 
6,Lq are polynomials in the lag operator L,  all roots of B(L)  and D(L)  are 
stable, and vt is a white-noise disturbance term. When p = 0 = q,xt 
becomes a fractional noise process [Mandelbrot and Van Ness (1968)]. 
The fractional parameter, given by d,  assumes noninteger values. The 
variance of the process xt is finite when d < 1/2, but is infinite 
when d 3 1/2 [Granger and Joyeux (1980)l. The fractional differencing 
operator, ( I  - L ) d ,  implies the presence of infinite-order lag dependence 
with slowly declining weights since, through an approximating series 

B(L)  (1 - lJdx, = D ( L ) v ,  

'Mandelbrot (1977b) and Mandelbrot and Van Ness (1968) discuss mainly in terms of fractional 
Brownian motions, which are continuous time variables. Their counterparts for discrete time 
variables are fractionally differenced processes considered by, e.g., Granger and Joyeux (1 980), 
Hosking (1981), and Sowell (1990). 
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expansion, one obtains: 
W 

( I  - L ) ~  = C r(lz - d ) L k / [ r ( k  + l)r(-d)i (2) 

where I-'(*) is the standard Gamma function. This general fractional 
model includes the usual autoregressive moving-average (ARMA) model 
as a special case in which d = 0. Such extension to have noninteger 
values of d increases the flexibility in modeling long-term dynamics 
by allowing for a richer class of spectral behavior at low frequencies 
than that implied by ARMA models. This can be seen from the spectral 
density of x t .  Granger and Joyeux (1980) and Hosking (1981) show that 
the spectral density function of x t ,  denoted by fx(w), is proportional 
to as w becomes small. Thus, the fractional parameter crucially 
determines the low-frequency dynamics of the process. For d > 0, fx(w) 
is unbounded at frequency o = 0, rather than bounded as for ARMA 
processes with d = 0. Indeed, when d > 0, x t  is a long-memory process 
showing a slow autocorrelation decay at a hyperbolical rate [Hosking 
( 1981)Ib2 The larger the value of d is, the stronger the long-term 
dependence will be. 

In this study, a spectral procedure developed by Geweke and Porter- 
Hudak (1983) is employed to estimate the fractional parameter. The 
Geweke-Porter-Hudak procedure provides a semi-nonparametric test 
for fractional processes that requires no explicit parameterization of the 
ARMA dynamics, which are generally not known a priori. Since this 
statistical procedure has not been widely applied in empirical work, a 
brief discussion of the basic setup of the procedure f01lows.~ 

The Geweke-Porter-Hudak test makes use of the fact that the low- 
frequency dynamics of a process are parameterized by the fractional 
parameter. The spectral density function of x t  is given by 

k=O 

f x ( w >  = 11 - exp(-iw)I-2dfu(w) = (2 s i n ( ~ / 2 ) ) - ~ ~ f ~ ( w )  (3) 

where ut = B-'(L)D(L)vt is a stationary process and fa(@) is its 
spectral density at frequency w [see, e.g., Hosking (1981)l. Taking 
logarithms of eq. (3) and evaluating at harmonic frequencies w j  = 

27rj/T ( j  = 0,. . . , T - l) ,  one obtains: 

In(fx(wj)> = M f u ( o > >  - d M 4  sin2(wj/2>) + ln(fu(wj>/fu(O)) (4) 

2Hosking (1981) shows that, for d > 0, x t  has an autocorrelation function approximately equal to 
T ~ ~ - ~  as the lag T becomes large. 
3The Geweke and Porter-Hudak procedure has been applied by Diebold and Rudebusch (1989) 
and Shea (1991) to analyze fractal behavior in national output and interest rates. 
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For low-frequency ordinates w j  near zero, the last term is negligible 
compared with the other terms. Adding I(wj), the periodogram at 
ordinate j, to both sides of eq. (4) yields 

In( l ( w j ) )  = In( fu(0)) - d ln(4 sin2(wj/2)) + ln(l(wj)/fx(wj)) (5) 

This suggests estimating d using a simple spectral regression equation 

In( I(wj)) = (YO - ( ~ 1  ln(4 sin2(wj/2)) + E t ,  j = 1,2 ,  ..., n (6) 

where ct, equal to ln(Z(wj)/fx(wj)), is asymptotically i.i.d. across har- 
monic frequencies. The periodogram I(oj) is computed as the product 
of 2/T and the square of the exact finite Fourier transform of the 
series { X I ,  x2 ,  . . . , x ~ }  at the respective harmonic ordinate. The number 
of low-frequency ordinates used for the regression n is an increasing 
function of T. Geweke and Porter-Hudak (1983) show that, for n = Tp 
with 0 < p < 1 ,  the least squares estimate of a1 provides a consistent 
estimate of d and hypothesis testing concerning the value of d can 
be based on the t-statistic of the slope coefficient. The theoretical 
asymptotic variance of Et is known to be equal to r 2 / 6 ,  which can 
be imposed in estimation to raise efficiency. 

DATA AND EMPIRICAL RESULTS 

The data considered in this study are major currency futures prices 
for the British pound (BP), German mark (DM), Japanese yen (JY), 
and Swiss franc (SF). Each series consists of daily observations from 
January 4, 1982, through December 31, 1991, drawn from various 
issues of the lnternational Money Market Yearbook. Currency futures 
contracts are traded for delivery at a fixed maturity data, namely the third 
Wednesday of March, June, September, or December. To increase the 
number of observations, daily settlement prices of the futures contracts 
closest to its maturity date are examined. The nearby futures price series 
thus constructed have 2527 observations for each currency. The use of 
a long data set is desirable since long-term dependence is of interest 
here. Two standard unit-root tests, the augmented Dickey-Fuller test 
and the Phillips-Perron test, are performed on all futures price series4 
The results are summarized in Table 1. They indicate that in no case can 
the null hypothesis of a unit root be rejected at any usual significance 

4The two unit-root tests are asymptotically equivalent and differ only in terms of the way short- 
term dependence is adjusted. The Dickey-Fuller test uses autoregressive lags; whereas, the 
Phillips-Perron test relies on nonparametric adjustment derived from spectral analysis. 
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TABLE I 
Tests for Unit-Root Nonstationarity 

Currency Futures 

Unit-Root Test BP DM /y S F  

Level Series: 
ADF(2) 
ADF(4) 
ADF(6) 

PP(2) 
p p (4) 
PP(6) 
Differenced Series: 
ADF(2) 
ADF(4) 
ADF(6) 

PP(4 
PP(4) 
P P (6) 

-2.6059 
-2.5404 
-2.4568 

-2.6503 
-2.641 2 
-2.6387 

-29.7944 
-23.1936 
- 19.1 047 

-49.5806 
-49.5790 
-49.5814 

-2.1567 
-2.1289 
-2.0973 

-2.1915 
-2.1910 
-2.1925 

- 28.6630 
-22.8409 
-1 8.51 00 

-52.8841 
-52.8727 
-52.8644 

- 1.7230 
-1.7109 
- 1.7603 

-1.7603 
-1.7695 
- 1.7872 

-28.2474 
-21.4645 
-17.8451 

- 60.6404 
-50.6405 
-50.6529 

-2.21 30 
-2.1376 
-2.0987 

-2.2869 
-2.2825 
-2.2824 

-28.9661 
-22.81 14 
- 18.9440 

-51.7895 
-51.7941 
-51.7937 

Notes: All series are in logarithms. The ADF (p )  statistic gives the test statistic for the augmented Dickey-Fuller test with 
a lag parameter equal top, and the PP(q) statistic gives the test statistic for the Phillips-Perron test with a lag parameter 
equal to q. Both tests examine the null hypothesis of a unit root in the considered series against the stationary alternative 
of no unit root. The null hypothesis will be rejected in favor of the stationary alternative when the test statistic is too small. 
A linear time trend is allowed in either test, and in no case is the time trend variable found to be statistically significant. 
Asymptotic critical values for both tests are given by - 3.12 (10%) and - 3.41 (5%). 
For all the differenced series, the null hypothesis of unit-root nonstationarity can be rejected at the 5% significance level. 

level. To remove the unit-root nonstationarity, which can affect proper 
statistical inferences, each data series is transformed into a return series 
by taking first differences in logarithms of the futures prices. 

Some preliminary data analysis of the series of futures price changes 
is carried out, with particular attention paid to evidence concerning de- 
viations from normality, autocorrelations, and conditional heteroskedas- 
ticity. Some descriptive statistics of the sample distribution of currency 
returns are provided in Table 11. Specifically, the skewness and excess 
kurtosis of the return distributions are computed; the values are reported 
together with their corresponding p-values indicating the statistical sig- 
nificance. For a normal distribution, both skewness and excess kurtosis 
measures should be equal to zero. The results suggest the presence of 
significant departures from normality in all the currency futures series 
under examination. Note that the excess kurtosis coefficients are all 
positive, suggesting that the currency return distributions have a much 
flatter tail than the normal distribution. The significant deviations from 
normality can be a symptom of nonlinear dynamics. 
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TABLE II 
Descriptive Statistics for Futures Price Changes 

Currency Futures 

Statistics BP DM I Y  S F  

Maximum 
Minimum 
Median 
Mean 
Standard deviation 
f-test for mean = 0 
Ip-value] 
Skewness 
Ip-value] 
Excess kurtosis 
Ip-value] 

0.0455 
-0.0452 

0.0000 
-0.0000 

0.0077 
-0.1 191 
[0.9052] 
0.1967 

3.2655 
[0.0000]a 

[0.0000]a 

0.0519 
-0.0522 

0.0000 
0.0001 
0.0078 
0.9422 
[0.3461] 
0.2480 

4.5733 
[0.0000]a 

[0.0000]a 

0.0533 
-0.0413 
-0.0001 

0.0002 
0.0069 
1.5644 

(0.1 1 771 
0.3797 

3.61 17 
[0.0000]a 

[0.0000]a 

0.0554 
-0.0369 

0.0000 
0.0001 
0.0084 
0.61 09 
[0.5413] 
0.31 27 

2.0481 
[0.0000]a 

[0.0000]~ 

Notes: The skewness is computed as the third sample moment standardized by the cube of the standard deviation. The 
excess kurtosis is the fourth sample moment divided by the square of the variance minus three. For a normal distribution 
both coefficients should be equal to zero. The numbers in brackets give the p-values of the respective test statistics. 
aSignificant at the 5% level. 

Further analysis is conducted by fitting to the currency futures 
return data an autoregressive (AR(p)) model given by 

V 

Xt = co + 2 cpxt - j  + Ut 
j=1 

( 7 )  

In this analysis, the lag parameter p is first determined using a model 
selection procedure based on the Schwarz information criterion. How- 
ever, short-term dependence seems not significant in the data since a 
model with p = 0 is selected for all currency futures. For illustration 
purposes, nonetheless, an AR(3) model is fitted to the return series. 
The squared residual series is then tested for possible autoregressive 
conditional heteroskedastic (ARCH) effects using the standard TR2 test. 
The test can be implemented as follows: Estimate an AR(r) process in 
terms of the squared residuals. The TR2 statistic is computed as the 
product of the number of effective observations and the coefficient of 
multiple determination from the AR(r ) regression. In addition, White’s 
( 1  980) test for general heteroskedasticity is conducted. This test is 
derived from the method-of-moments approach. Unlike the TR2 test 
for ARCH effects, the White (1980) test does not assume any specific 
structure of heteroskedasticity. 

Table 111 contains the results concerning short-term dependence 
and heteroskedasticity. The Ljung-Box statistics suggest that the residu- 
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TABLE 111 

Short-Term Dependence and Heteroskedasticity in Futures Returns 

Currency Futures 
Regressors 

and Statistics B P  DM JY SF 

xt-1 

xt-2 

xt-3 

W 6 )  
[p-value] 
LB(12) 
[p-value] 
LB(18) 
[p-value] 
ARCH(6) 
[p-value] 
ARCH(12) 
[p-value] 
ARCH(l8) 
[p-value] 
White's Test 
[p-value] 

Constant -0.0001 0.0001 0.0001 0.0000 
(-0.1 009) (0.9809) (1.5831) (0.6722) 

0.01 45 -0.0500 -0.0084 -0.0298 
(0.5624) (- 1.61 05) (-0.3561) (- 1.41 88) 

-0.0003 
-0.0136) 

0.01 15 
(0.5379) 
3.71 00 
[0.7158] 
5.4714 
[0.9404] 

17.1101 
[0.5155] 

47.2872 

63.8797 

83.7463 

16.2514 
[0.0927Ib 

[0.0000]a 

[0.0000]a 

[0.0000]a 

-0.0098 
-0.4096) 
-0.0242 
-1.1005) 

3.5164 
[0.7418] 
7.1815 
[0.8453] 

18.1037 
[0.4488] 

104.0446 

127.6033 

150.5968 

73.2506 

[O .OOOO]" 

[0.0000]a 

[0.0000]a 

[0.0000]a 

0.0036 
(0.1 580) 
0.0265 
(1.2789) 
5.51 92 
[0.4791] 
8.01 76 
[0.7838] 

18.0545 
[0.4521] 

133.1321 

148.4920 

152.91 51 

161.4374 

[O0.0000]a 

[0.0000]a 

[0.0000]a 

[0.0000]a 

0.0092 
(0.4059) 
0.0226 
(0.9075) 
5.9481 
[0.4290] 

10.9020 
[0.5373] 

18.1394 
[0.4465] 

49.0242 

64.831 6 

68.4037 

45.6626 

[0.0000]" 

[0.0000]a 

[0.0000]a 

[0.0000]a 

Notes: An AR(3) model is estimated for individual currency futures return series (xt) .  The figures in parentheses are 
t-statistics, computed using standard errors obtained from White's (1 980) heteroskedasticity-consistent covariance matrix 
estimator. The asymptotic distribution of the Ljung-Box statistic, LB(s), is ,y2(s) under the null hypothesis of no serial 
correlation in the residual. The ARCH(r) statistic, obtained as TRZ from regressing the squared residual on a constant and 
its lagged values at r lags, is distributed asymptotically as x'(r) under the null hypothesis of no ARCH effects. The White 
(1980) test provides statistics for a TR' test for general heteroskedasticity. The numbers in brackets give the corresponding 
p-values of the LB, the ARCH, and the White test statistics. 
=Significant at the 5% level. 
bSi gnificant . '  at the 10% level. 

als from all four regressions show no significant serial correlation, 
therefore supporting the adequacy of the respective autoregressive lag 
specification. The reported t-statistics for the autoregressions are com- 
puted from White's ( 1980) heteroskedasticity-consistent covariance ma- 
trix estimator. This allows proper inferences about the autoregressions 
to be made even in the presence of heteroskedasticity. As shown by the 
t-statistics, there are no significant autocorrelations in all futures return 
series. On the other hand, the ARCH test statistics strongly indicate 
the presence of substantial ARCH effects in all the four return series. 
The results from the White (1980) test also confirm the presence of 
significant heteroskedasticity in all the series under consideration. 
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The results in Table I11 suggest, in general, the presence of hetero- 
skedasticity, though not short-term dependence, in the currency fu- 
tures return data. In view of the results, it is desirable that a test 
for fractional processes should properly account for heteroskedastic- 
ity in the data; otherwise, reliable statistical inferences cannot be 
drawn. In this regard, these results provide support for the use of 
the Geweke-Porter-Hudak procedure given its robustness to variance 
nonstationarity. 

In applying the Geweke-Porter-Hudak procedure, the number of 
low-frequency ordinates, n, used in the spectral regression is a choice 
variable. The choice necessarily involves judgment. Although a too large 
value of n will cause contamination of the d estimate due to medium- or 
high-frequency components, a too small value of n will lead to imprecise 
estimates due to limited degrees of freedom in estimation. To balance 
these two factors of consideration, a range of p values is used for 
the sample size function, n = T P .  The results reported below are for 
p = 0.60, 0.65, and 0.70. This set of choice of p values yields good 
test performance in the experiment. 

Table IV contains the estimates for the fractional parameter from 
the Geweke-Porter-Hudak spectral regression. The d estimates are 
provided together with their t-statistics based on both empirical error 
variance estimates and the known theoretical error variance ( r 2 / 6 ) .  In 
general, the d estimates appear robust with respect to the choice of the 
low-frequency ordinates. Moreover, these d estimates are positive for 
all the four currency return series considered, with the British pound 
series having the smallest fractional parameter estimate. The t-statistics 
are used to perform formal tests of the null hypothesis of a nonfractional 
process (d = 0) against the alternative of a long-memory fractional 
process (d > 0). The results indicate that, except for the British pound 
series, there is statistically significant evidence that the currency futures 
return series are well described by a long-memory fractional process. 
Qualitatively similar results can be obtained, independent of whether 
the t-statistics are computed using empirical error variance estimates 
or using the theoretical error variance. These results, on the whole, 
suggest that currency futures price dynamics contain fractal structure 
with long-term dependence. 

CONCLUDING REMARKS 

This study examines the relevance of fractal dynamics in major currency 
futures markets. Fractal dynamics are an interesting form of dynamics 
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TABLE IV 

Estimates for the Fractional Parameter d 

Currency Futures 
Luw-Frequency 
Ordinates Used B P  DM P S F  

= ~ 0 . 6 0  0.031 8 
(0.5242) 
I0.4825) 

= ~ 0 . 6 5  0.0227 
(0.461 2) 
(0.4241) 

= rO.70 0.0389 
(0.9492) 
(0.8966) 

0.0821 

{ 1.2456) 
0.0839 
(1 .6333)a 
11 .6713}b 
0.0683 
(1 .6560)b 

(1.3379)a 

{1.5749}a 

0.1225 
(1.8915)b 
{l .8577}b 
0.1273 
(2.3630)b 
{2.3830}b 
0.1231 
(2.5347)b 
{2.8384}b 

0.1262 
(2.2005) 
{l .9148}b 
0.1313 
(2.4424)b 
I2.45~78)~ 
0.0763 

{l .7584}b 
(1.7534)b 

- 

Notes: The number of low-frequency ordinates included in the Geweke-Potter-Hudak spectral regression is given by 
n = T p ,  where T = 2,526 is the sample size of the currency futures return series. The figures in ( ) and { } are the 
t-statistics for the d parameter computed based on empirical error variance estimates and the known theoretical error 
variance (.r2/6), respectively. The null hypothesis of a nonfractional process (d = 0) is tested against the long-memory 
alternative of a fractional process (d > 0). 
aSignificant at the 10% level. 
bsi gnificant . '  at the 5% level. 

characterized by irregular cyclical fluctuations and long-term depen- 
dence. This study contributes to the current literature on financial price 
dynamics by estimating directly the fractal structure in currency futures 
prices based on a time series model of fractional processes. A semi- 
nonparametric spectral method is employed to estimate the fractional 
model. Statistically significant evidence of fractal structure is found in 
three out of four currency futures return series considered. 

The results call into question the adequacy of usual linear models, 
such as martingale models, to describe the behavior of currency futures 
prices, and it invites the development of pricing models that can account 
for fractal dynamics. Empirical problems can also arise in testing 
futures pricing models because standard statistical methods may not 
be appropriate in the presence of fractal dependence [see, e.g., Sowell 
(1990) and Yajima (1985)l. Moreover, the finding of fractal structure 
reopens the debate on pricing efficiency and market rationality. 

Since the presence of fractal dynamics can have important theo- 
retical and empirical implications, future research needs to examine 
the relevance of fractal dynamics in many other financial markets. 
Although the Geweke and Porter-Hudak procedure used to uncover 
fractal structure is not sensitive to variance nonstationarity, including 
nonlinear conditional heteroskedastic dependence, little is known about 
the possible effects of chaotic dynamics on the statistical procedure. 
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Future research on investigating the robustness of the Geweke and  
Porter-Hudak procedure to  chaotic dynamics may be warranted. 
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